

solutions for society, economy and environment

Digibus: Results from the first Self-Driving Shuttle Trial on a Public Road in Austria

Karl Rehrl, Salzburg Research, Austria Cornelia Zankl, Salzburg Research, Austria

Hosted and organised by:

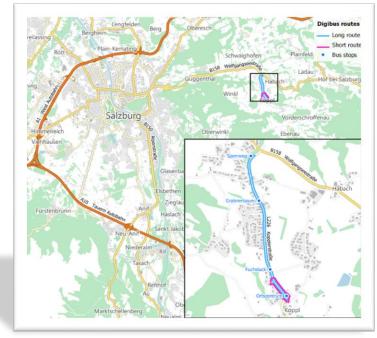
rian Ministry for Transport, d Technology austriatech

Together with:

Automated Driving in Austria

- Action Plan for Automated Driving
- AutomatFahrV: A legal frame for tests of automated vehicles on public roads
- Testing of an autonomous minibus
 - Driver on board at all times
 - 20 km/h maximal speed
 - Danger stop, accident recorder
 - Insurance, test drive number plates
- Test permission on April 18, 2017

April 2017: Start of the 7-months trial



03.05.2021

Trial setting

- Village of Koppl
 - 3.305 inhabitants, 1.243 households
- Physical infrastructure
 - Asphalted road, two lanes
 - 1,4 km length per direction
 - 65 m elevation, max. 8% incline
 - 4 stops per direction
 - First/last mile scenario
- Digital infrastructure
 - Digital map (pre-recorded and edited)
 - Mobile data connection (partly 3G/4G)
 - GNSS correction: APOS / local base

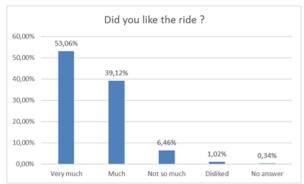
Results – Experiences 1/2

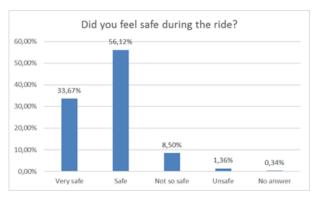
- Digital driving environment
 - Manual digitalization process, lack of automation / standards
- Positioning
 - LIDAR-Positioning works well only in urban settings
 - GNSS-RTK: Reliability issues, partly poor coverage
 - Lack of road markings in rural areas
- Environmental detection
 - Reliable detection of static obstacles
 - Poor detection of moving entities (speeds > 30 km/h)
 - Problems with dead angles, reflections,...
 - No object classification

Results – Experiences 2/2

- Driving situations / maneuvers
 - Pre-defined, e.g. priority rules
 - Vehicle stops in front of obstacles, no dynamic maneuvers
 - High complexity of simple driving situations
 - Trial-and-error: Lack of systematic testing
 - Realistic, varying environmental conditions
- Interaction with other road users
 - Lack of proven interaction patterns
- Interaction with passengers
 - Confidence / feeling of safety?

Results – Passenger Survey




Over 92% liked the ride

- Reasons for likes
 - "good detection of obstacles"
 - "smooth and quiet driving behavior"
 - "advanced development of the technology"

- Reasons for unsafety
 - "abrupt or jerky braking"
 - "not enough confidence"
 - "lack of experience"
 - "poor sensor technology"

Conclusions

- Self-driving shuttles are on the market and ready to test
- Legal frame for testing exists and should be used
- Tests on open roads are a necessity
- Need for systematic further development and testing
- Passengers' acceptance? -> Surprisingly good (bias!)
- Other traffic participants' acceptance? -> Mixed
- Operators' acceptance? -> Skeptical

Next steps: Digibus Austria

- Austrian flagship project for research and testing of automated driving in public transport
 - Started in April 2018
 - 3 years runtime
- Meet us in the interactive zone and test the EasyMile EZ10 shuttle!

solutions for society, economy and environment

Contact

Dr. Karl Rehrl Head of Research Group Digital Mobility Salzburg Research, Salzburg, Austria karl. rehrl@salzburgresearch.at